Odour Control in Mixed Waste Composting Plants: Indian Context and Global Practices
Municipal solid waste (MSW) composting is an important way to manage the large amount of organic waste in India, where organic matter makes up 60 to 70% of total waste. This process turns organic materials into nutrient-rich compost, providing a sustainable waste management option. However, composting produces smelly compounds that can create environmental and public health issues, especially in India’s crowded urban areas. The use of mechanical equipment like trommels, belt conveyors, and large reception pits in Indian composting facilities makes odour emissions worse due to more waste handling and exposure. Effective control of odours is essential for successful operations and community support. This document details the characteristics of mixed waste in India, identifies key odorous compounds, outlines Indian regulations for odour control, describes global odour control practices, explores odour control technologies, and highlights effective strategies.
Municipal solid waste in India consists of 60 to 70% organic material. This includes food waste, vegetable peels, garden trimmings, and other biodegradable items. The rest includes recyclables such as paper, plastic, glass, and metals, along with hazardous household waste like batteries, paints, and chemicals, as well as inert materials such as sand, grit, and construction debris. The waste has a high moisture content, often over 50%, due to wet organic waste like kitchen scraps. It also has a low calorific value of 800 to 1,000 kcal/kg, which makes composting a better option than thermal processing. The quick breakdown of the organic part, along with the high moisture and poor airflow, leads to anaerobic conditions. This creates unpleasant smells during decomposition, especially in large pits where waste is stored before processing.
The decomposition of organic matter in MSW composting generates various odourous compounds due to microbial activity under varying oxygen conditions. Key compounds include:
These compounds are released during waste handling, preprocessing (e.g., trommel screening, conveyor transport), and storage in reception pits, requiring targeted odour control measures.
The Ministry of Environment, Forest and Climate Change (MoEF&CC) notified the Solid Waste Management Rules, 2016, which regulate the management of MSW in India for urban agglomerations, census towns, notified industrial townships, and other such areas. Major provisions for odour control are:
The technical guidelines of the CPCB suggest aeration, control of moisture, and technologies such as biofilters to control odours. Inconsistent follow-up due to financial limitations, infrastructural constraints, and lack of awareness leads to ongoing odour issues, especially in centres with big reception pits. Nevertheless, it is practically difficult to control the odour with the change in process only.
Globally, MSW composting facilities use process optimization and advanced technologies to manage odours, especially in systems with mechanical equipment and reception pits:
Biological systems use microbial activity to break down odorous compounds. They provide cost-effective and sustainable solutions:
Non-biological systems are utilized for pungent smells or where biological systems are unavailable:
Combining odour control technologies enhances efficiency and addresses a broader range of compounds:
These blends are designed according to the character and volume of the odour of the plant, with air from trommels, reception pits, and conveyors blown to the main treatment unit (e.g., biofilter) and then to a secondary unit (e.g., activated carbon) for further removal.
At Elixir Enviro Systems, we specialize in designing and delivering comprehensive odour control solutions tailored for municipal solid waste (MSW) composting plants across India. With deep domain expertise in biological air treatment and solid waste handling, we offer:
Odour control in mixed waste composting plants is a serious concern in India because of high organic load, non-segregation, high moisture, and use of mechanical systems like trommels, conveyors, and large reception pits. Segregation, effective processing, and emission control are mandated under the Solid Waste Management Rules, 2016, but the gaps in implementation persist because of non-availability of resources. Significant odourous compounds like VOCs, ammonia, H2S, mercaptans, VFAs, and amines are released during handling of wastes, and specific interventions like enclosed preprocessing, aeration, and pit management are necessary. Internationally, technologies like in-vessel composting, biological systems (biofilters, biotrickling filters, bioscrubbers), and non-biological systems (chemical scrubbers, activated carbon filters, thermal oxidation, ozone treatment, plasma technology) are useful in odour control, and combination treatments enhance efficiency. For India, using low-cost biological technologies like biofilters, along with better segregation, pit aeration, and enclosing mechanical systems, may improve odour control and support sustainable composting operations.
Q1: Why does municipal solid waste composting produce strong odours?
Municipal solid waste composting involves the decomposition of high-moisture, organic-rich waste. Under anaerobic conditions—often caused by poor aeration or excess moisture—this generates volatile organic compounds (VOCs), ammonia, hydrogen sulfide (H₂S), volatile fatty acids (VFAs), and other malodorous gases.
Q2: What are the main sources of odour in Indian composting plants?
The key sources include large reception pits with poor ventilation, trommel screening equipment, and open conveyor systems. These areas facilitate anaerobic conditions and release odorous compounds during waste handling and storage.
Q3: What is the best odour control technology for MSW composting in India?
Biological systems like biofilters and biotrickling filters are the best in cost terms for Indian conditions. They provide high odour removal efficiency (85–98%) with relatively lower running cost, especially when combined with appropriate enclosures and pit aeration systems.
Q4: Are Indian composting plants required to control odour under law?
Yes. The Solid Waste Management Rules, 2016, control odour by proper segregation of waste, standards for processing, and measures for controlling emissions. A permission from the State Pollution Control Boards is required for plants with more than 5 metric tonnes per day with special provisions for odour control.
Q5: Can process adjustments alone eliminate odour emissions?
No. While process improvement like aeration and moisture control reduces odour formation, odour formation cannot be eliminated. Effective odour control relies on the application of a combination of biological or chemical treatment processes, equipment enclosures, and efficient management of sound reception pits.
In the dairy industries maintaining a clean hygienic and Odour free environment is critical not only for regulatory compliance but also for employee health and brand image. From milk pasteurization to ghee carification, each stage in dairy processing can emit various smell that, if left unchecked can cause discomfort , environmental concerns and even neighbour complaints. This blog guides you to explore the cause of odour in dairy, milk and ghee processing plants and effective strategies to control and eliminate them.
Dairy processing involves the handling of large amounts of organic materials such as raw milk, cream, curd and butter, which are subjected to spoilage and fermentation. If not managed properly, the by-products of these processes can lead to the release of unpleasant smells. Here’s why odour control should be a top priority:
Understanding the sources of odour helps in deploying targeted solutions. Some of the most common odour sources in a dairy or ghee processing facility include:
Psychrophilic (bacteria with optimal growth rate below 15°C) and Mesophilic (bacteria with optimal growth rate between 20-40°C) bacterial growth can make the milk processing plant smell awful. This happens, If the milk is stored for extended periods at improper temperatures, it can ferment and can produce sour or putrid odours.
The heating of milk and cream releases volatile organic compounds (VOCs) that contribute to strong smells, especially during ghee production. Also improper processing like Overheating butter during clarification can cause burnt odours, while incomplete removal of milk solids can lead to spoilage-related smells.
Whey, a by-product of curd and cheese making, contains organic matter that decomposes quickly. Improper disposal leads to foul smells.
Milk spills or leftover residue on floors can rot and produce odour if not cleaned thoroughly.
Effluents containing milk solids, fats, and detergents from cleaning-in-place (CIP) systems can create anaerobic conditions, emitting hydrogen sulfide and other gases.
Managing odour in dairy processing plants requires a multi-pronged approach combining engineering, chemical, and biological controls. Here are some proven strategies:
Whenever possible, ensure that odour-generating processes like ghee clarification or cheese ripening are enclosed and equipped with fume extraction systems. Also its always better to use the enclosed crate washing units and so on to avoid the spillage milk speading all over and acting as a fugitive source of odour.
These eco-friendly systems use microbial activity to neutralize odours.
✅ Biofilters (Cocofil™ or Organic Media)
A mixture of coconut husk, compost, and soil traps and degrades VOCs biologically. These are perfect for continuous, low-concentration odour sources.
In this setup, odourous air is washed with water in a tower where bacteria are suspended. The scrubbing media absorbs odourous gas, and which is later transferred to an aeration-based treatment unit. At this aeration tank the microbes digest compounds like H₂S and ammonia and making it odourless compounds. This liquor is later circulated again in the absorption/scrubbing column to as a continuous system.
✅ Biotrickling Filter
In this setup, odourous air is passed through a column where the microbes are attached on a packing medium like in the trickling filter. Unlike trickling filter, which is used for wastewater treatment, here the case of biotrickling filter, air is being treated. Similar to that in the scrubber, the mass transfer of odourous2 compounds first happens from waste gas to the liquid that is being trickled over the media containing bacteria. Then the compounds gets taken up by the bacteria from the liquid and neutralize them.
All the above systems are low-maintenance, energy-efficient, and are highly effective for odour control.
Ideal for point-source odours with high gas concentrations. Here, odourous air is passed through a packed column or spray scrubbers where it reacts with acid/alkali solutions.
Used for ammonia control (uses acidic solution as scrubbing liquid)
Used for hydrogen sulfide and other acid gas control (alkaline solutions are used as scrubbing liquid).
Always include mist eliminators to prevent chemical carryover.
These are compact, plug-and-play systems that adsorb odourous gases using porous carbon media. Suitable for:
They offer high removal efficiency and minimal maintenance, making them a popular choice.
Instead of letting organic waste rot in open containers, convert it into compost or manage it through covered anaerobic digestion tanks.
Managing odour effectively starts with knowing when, where, and how it’s being released. One of the smartest ways to do this is by using real-time odour mapping and monitoring with advanced sensor technology.
By placing sensors and data loggers in key areas around the facility, plant operators can keep an eye on odour levels, spot unusual changes, and identify problem spots quickly. This steady flow of data helps teams take action early—before odour becomes a regulatory issue or leads to complaints from the community.
How Oizom Helps with Odour Monitoring
Oizom (www.oizom.com), a leader in environmental monitoring, provides innovative tools like Polludrone and Odosense to tackle odour challenges. These smart, IoT-enabled devices are designed to accurately detect a variety of odourous gases, including hydrogen sulfide (H₂S), ammonia (NH₃), methane (CH₄), and VOCs, giving operators the insights they need to stay ahead of potential problems.
In India and many other countries, dairy processing units—including those producing milk, curd, butter, and ghee—must adhere to stringent odour emission norms laid out by their respective Pollution Control Boards. The Central Pollution Control Board (CPCB) and State Pollution Control Boards (SPCBs) have specific environmental guidelines aimed at minimizing nuisance odours that can affect local communities. To stay on the right side of regulations, facilities need to run regular environmental audits, keep current records of their emissions and cleanup efforts, and work with certified experts in odour control. Why go through all that? Because staying compliant doesn’t just help avoid fines or legal trouble—it also builds public trust and shows that the company genuinely cares about the environment.
Elixir Enviro Systems is a leading name and pioneer in India in industrial odour control, providing end-to-end solutions that help dairy processing units stay compliant, efficient, and community-friendly. With extensive experience in managing odour emissions across diverse industries, Elixir offers specialized services tailored for dairies, milk processing units, and ghee manufacturing plants, where organic waste, fermentation processes, and effluent treatment systems often result in strong and persistent odours.
Our offerings include:
With over 1 million m³/hr of treated air capacity across India, Elixir Enviro Systems is the trusted partner for sustainable, scalable, and proven odour control in the dairy industry.
Odour control in dairy, milk, and ghee processing plants is not a luxury—it’s a necessity. Persistent odours don’t just affect your plant’s environment; they can compromise employee health, community relations, and compliance with environmental regulations. A proactive, well-engineered odour management strategy enhances operational efficiency, reduces legal risk, and strengthens your brand’s reputation.
Elixir Enviro Systems helps dairy processors take odour control from an afterthought to a core operational priority. With industry-specific expertise, cutting-edge technologies, and end-to-end support, we empower your facility to operate cleaner, safer, and more sustainably.
📞 Need help with odour control at your facility?
Partner with Elixir Enviro Systems to implement reliable, compliant, and sustainable odour control solutions tailored to your dairy operations.
👉 Contact us today
📧 Email: info@elixirenviro.in 🌐 Visit:www.elixirenviro.in
Foul odours can result from the fermentation of spoiled milk (raw material handling), heating of fats (processing), waste accumulation, whey disposal, and inefficient cleaning processes. Also, wastewater treatment plant collection tanks and headworks creates big odour nuisance issues. In many places, the emissions from the spray drying column also creates huge odour nuisance. In short, the odour from dairy can be the following places
Odour perception is subjective but measurable using sensory and instrumental techniques. Commonly detected smells in dairy operations include sour milk, rotten eggs (hydrogen sulphide), rancid butter, and ammonia-like scents. Odour monitoring includes both qualitative and quantitative approaches:
Several key compounds are responsible for malodour in dairy operations:
Operational changes can significantly reduce odour:
Use enclosed heating systems, make sure the area is well-ventilated, and use air scrubbers or odour-neutralizing products. Keeping the space clean and removing waste regularly also makes a big difference.
Yes, Biofilters, Biotrickling filters, Bioscrubbers and plasma ionization are sustainable, environmentally friendly options that effectively neutralize odours. Generally, the Biological systems such as Biofilter, Biotrickling filters and Bioscrubbers turns out to be the lowest lifetime cost system. Require low energy and offer high removal efficiency for H2S and VOCs
Key considerations:
Absolutely. Most environmental boards require odour management plans, and effective odour control helps meet these compliance standards
Chemical plants play a crucial role in producing essential products for various industries. However, their operations often emit strong and unpleasant odours, leading to significant challenges. These odours can negatively impact the surrounding communities, cause regulatory issues, and harm the environment. Addressing these challenges with effective odour control solutions is essential to ensure compliance, protect air quality, and maintain positive community relations.
Variety and Complexity of Odours
Chemical plants handle a wide range of raw materials, chemicals, and byproducts, each potentially emitting different types of odours. The variety of odours—including sulfur compounds, ammonia, volatile organic compounds (VOCs), and other organic chemicals—makes it challenging to implement a one-size-fits-all odour control solution.
Fluctuating Emission Rates
Chemical processes are often dynamic, with odour emissions varying based on factors like temperature, pressure, and the phase of the process. These fluctuations make it difficult to predict and control odour levels, especially in real-time.
Regulatory Compliance
In many regions, chemical plants must adhere to strict environmental regulations governing odour emissions. These regulations often require continuous monitoring, testing, and reporting of air quality, which can be resource-intensive. Failure to comply can lead to heavy fines or shutdowns.
Impact on Workers and the Community
The presence of strong odours can reduce air quality in and around chemical plants, impacting workers’ health and well-being. In some cases, prolonged exposure can lead to respiratory problems, headaches, and nausea. Additionally, odour emissions can affect local communities, causing complaints and public relations challenges.
Cost and Maintenance
Odour control systems, especially those that require complex equipment such as scrubbers, biofilters, or incinerators, can be costly to install and maintain. The ongoing operational costs of these systems can also be significant, especially when considering energy consumption and the need for regular maintenance to ensure they remain effective.
Source Identification and Onsite Measurement:
Odour Treatment Technologies:
Maintenance and Monitoring:
At Elixir Enviro Systems, we specialize in providing comprehensive odour control solutions for chemical plants. Our services include:
1. Odour Control Technologies:
2. Onsite Odour Assessment:
4. Modelling and Simulation:
5. Pilot Studies:
6. Regular Maintenance:
Odour control in chemical plants is essential not only for regulatory compliance but also for fostering community harmony, protecting the environment, and maintaining smooth operations. While the challenges may be complex, innovative solutions and proactive management can make odour control both effective and sustainable.
Partnering with a trusted expert like Elixir Enviro Systems ensures that chemical plants receive tailored, cutting-edge odour control solutions that meet their unique needs. Our commitment to excellence, sustainability, and community well-being makes us the ideal choice for addressing your odour management challenges.