Odour Control in Mixed Waste Composting Plants: Indian Context and Global Practices

Introduction

Municipal solid waste (MSW) composting is an important way to manage the large amount of organic waste in India, where organic matter makes up 60 to 70% of total waste. This process turns organic materials into nutrient-rich compost, providing a sustainable waste management option. However, composting produces smelly compounds that can create environmental and public health issues, especially in India’s crowded urban areas. The use of mechanical equipment like trommels, belt conveyors, and large reception pits in Indian composting facilities makes odour emissions worse due to more waste handling and exposure. Effective control of odours is essential for successful operations and community support. This document details the characteristics of mixed waste in India, identifies key odorous compounds, outlines Indian regulations for odour control, describes global odour control practices, explores odour control technologies, and highlights effective strategies.

Characteristics of Mixed Waste in India

Municipal solid waste in India consists of 60 to 70% organic material. This includes food waste, vegetable peels, garden trimmings, and other biodegradable items. The rest includes recyclables such as paper, plastic, glass, and metals, along with hazardous household waste like batteries, paints, and chemicals, as well as inert materials such as sand, grit, and construction debris. The waste has a high moisture content, often over 50%, due to wet organic waste like kitchen scraps. It also has a low calorific value of 800 to 1,000 kcal/kg, which makes composting a better option than thermal processing. The quick breakdown of the organic part, along with the high moisture and poor airflow, leads to anaerobic conditions. This creates unpleasant smells during decomposition, especially in large pits where waste is stored before processing.

Odorous Compounds in Mixed Waste Composting

The decomposition of organic matter in MSW composting generates various odourous compounds due to microbial activity under varying oxygen conditions. Key compounds include:

  1. Volatile Organic Compounds (VOCs): These include alcohols (e.g., ethanol), aldehydes (e.g., acetaldehyde), and ketones (e.g., acetone),. They form when carbohydrates and proteins break down and create strong, solvent-like smells.
  2. Ammonia (NH₃): Released during the decomposition of nitrogen-rich materials such as food waste and manure, ammonia produces a sharp, irritating odour, especially in high-pH environments.
  3. Hydrogen Sulfide (H₂S): Formed under low-oxygen conditions, hydrogen sulfide emits a characteristic rotten egg smell. This odour is common in poorly aerated compost piles or reception pits.
  4. Mercaptans: Organic sulfur compounds such as methyl mercaptan produce a strong, skunk-like odour, resulting from the anaerobic breakdown of proteins.
  5. Volatile Fatty Acids (VFAs): Compounds such as acetic, propionic, and butyric acids are produced during anaerobic fermentation, contributing to sour or rancid odours.
  6. Amines: Compounds like trimethylamine, derived from protein degradation, produce fishy or ammonia like smells.

These compounds are released during waste handling, preprocessing (e.g., trommel screening, conveyor transport), and storage in reception pits, requiring targeted odour control measures.

Indian Regulations for Odour Control in MSW Composting

The Ministry of Environment, Forest and Climate Change (MoEF&CC) notified the Solid Waste Management Rules, 2016, which regulate the management of MSW in India for urban agglomerations, census towns, notified industrial townships, and other such areas. Major provisions for odour control are:

  1. Source Segregation: The regulations require source segregation of waste into biodegradable, non-biodegradable, and hazardous types in order to minimize contamination, enhance quality of compost, and reduce odour-generating substances. For example, plastics and metals can be used to hold moisture, forming anaerobic micro-environments that release volatile fatty acids (VFAs), hydrogen sulfide (H2S), and mercaptans to some but not the only cause of odour production.
  2. Standards for Processing: Urban local governments (ULBs) need to set up composting or bio-methanation plants for biodegradable waste, with controlled conditions to restrict odours. Plants must have sanitary conditions and control emissions properly.
  3. Standards of Quality for Compost: Schedule II defines standards for compost so that it is free from harmful substances, indirectly controlling odours by encouraging good processing practices.
  4. Monitoring and Compliance: ULBs should report to the Central Pollution Control Board (CPCB) by April 30 of every year about compliance with waste treatment and odour control. The CPCB compiles these reports for the Central Government on or before December 15 every year.
  5. Environmental Protection: The regulations focus on avoiding environmental pollution, such as odour release, through handling and processing waste appropriately. Treatment facilities with over 5 metric tonnes of waste per day must be approved by the State Pollution Control Board (SPCB) and must have provisions for odour control.

The technical guidelines of the CPCB suggest aeration, control of moisture, and technologies such as biofilters to control odours. Inconsistent follow-up due to financial limitations, infrastructural constraints, and lack of awareness leads to ongoing odour issues, especially in centres with big reception pits. Nevertheless, it is practically difficult to control the odour with the change in process only.

Global Odour Control Practices in MSW Composting Facilities

Globally, MSW composting facilities use process optimization and advanced technologies to manage odours, especially in systems with mechanical equipment and reception pits:

  1. Process Optimization: Maintaining aerobic conditions through aeration (e.g., aerated static piles with blowers) and controlling moisture levels (50–60%) minimize anaerobic decomposition. Source separation and mechanical screening reduce contaminants, improving feedstock quality and reducing odours. For reception pits, forced aeration and rapid turnover are essential.
  2. Technological Interventions: Enclosed systems like in-vessel composting contain odours, while air treatment technologies capture and treat emissions from preprocessing and pits. Enclosed trommels and conveyors with negative-pressure systems are standard in developed countries, with extracted air treated using various technologies.

Odour Control Technologies

Biological Odour Control Units

Biological systems use microbial activity to break down odorous compounds. They provide cost-effective and sustainable solutions:

  1. Biofilters: These systems use organic materials to absorb and break down VOCs, ammonia, and H2S. They achieve 85 to 95% odour removal efficiency. Biofilters work well for treating air from enclosed trommels, conveyors, and reception pits. They need moisture control for the media and require media replacement every 3 to 5 years.
  2. Biotrickling Filters: These use synthetic packing materials that get irrigated with nutrient-rich liquid to support the breakdown of pollutants by microbes. They effectively handle high concentrations of ammonia and H2S, reaching 90 to 98% removal efficiency. Their compact design makes them suitable for enclosed preprocessing areas. However, they require a constant supply of water and nutrients, which increases costs.
  3. Bio-scrubbers, These systems channel odorous air through a liquid medium filled with microorganisms that break down pollutants. They achieve 80 to 90 percent efficiency for water-soluble compounds like ammonia. Bioscrubbers can handle high odor loads, but they need a lot of energy for air and liquid circulation. They also require a dedicated water treatment system, which limits their use in places with limited resources.

Non-Biological Odour Control Units

Non-biological systems are utilized for pungent smells or where biological systems are unavailable:

  1. Chemical Scrubbers: Wet scrubbers utilize chemical solutions (sodium hydroxide, sulfuric acid) to neutralize ammonia and H2S with 85–95% removal efficiency. They can be used in reception pit and preprocessing air but require expensive chemical inputs and maintenance.
  2. Activated Carbons Filters: These adsorb VOCs and other odor-causing compounds and, when used alone or in combination with biofilters, are 90–99% effective. They are suitable for polishing biologically treated air but need frequent replacement, so they are expensive.
  3. Thermal Oxidation: Burning of the malodourous gases at elevated temperatures (800–1200°C) with almost complete odour annihilation. Used in large plants where a lot of odour is generated but is energy intensive and generates secondary emissions, so usage is limited.
  4. Plasma Technology: Non-thermal plasma systems use high-energy electrons to break down odorous molecules, achieving 85–95% efficiency. They are emerging technologies suitable for compact facilities but are costly and require technical expertise and are generally comes with very expensive annual maintenance cost for the electrode replacement and thereby higher operational costs, limiting the use in large facilities.

Combination Treatments for Odour Control

Combining odour control technologies enhances efficiency and addresses a broader range of compounds:

  1. Biofilter + activated carbon filter: Biofilters deliver primary VOCs, ammonia, and H2S treatment with 85–95% removal, and polishing the remaining odours using activated carbon filters to 95–99% total efficiency. This occurs in enclosed trommel and reception pit plants with optimal cost and performance.
  2. Biotrickling Filter + Chemical Scrubber: Biotrickling filters remove high levels of ammonia and H2S (90–98% efficiency), and chemical scrubbers remove remaining acid or alkaline gases, 95% total efficiency. It is suitable for high-odour-load plants but increases the cost of operations.
  3. Biofilter + Thermal Oxidation: This combination is generally used in facilities having separate streams of odour with extremely high intensity odour and moderate indensity odour. the high intensity odour is treated in the thermal oxidation stage as this will reduce high dependence on the secondary fuel, achieving near-complete removal. Whereas the odour from the moderate sources will be handled in Biofilters (85–95% efficiency). This is used in large-scale facilities with stringent regulations but is energy intensive.
  4. Chemical scrubber + Activated Carbon Filter: Ammonia and H2S are scrubbed out by chemical scrubbers (85–95% effective), with the best removal with activated carbon filters for VOCs, providing 95–99% total effectiveness. This is appropriate for plants with multiple odour sources but is costly in terms of replacement requirements for chemicals and carbon.

These blends are designed according to the character and volume of the odour of the plant, with air from trommels, reception pits, and conveyors blown to the main treatment unit (e.g., biofilter) and then to a secondary unit (e.g., activated carbon) for further removal.

Elixir Enviro Systems: Your Partner in Odour Control for Composting Plants

At Elixir Enviro Systems, we specialize in designing and delivering comprehensive odour control solutions tailored for municipal solid waste (MSW) composting plants across India. With deep domain expertise in biological air treatment and solid waste handling, we offer:

✅ Biological Odour Control Units

  1. Biofilters: Engineered for high odour removal efficiency (85–95%), ideal for reception pits, trommels, and conveyor enclosures. Our biofilters use specially selected media for longer lifespan and consistent performance.
  2. Biotrickling Filters: Compact and highly effective for treating high concentrations of ammonia and H₂S, with up to 98% removal efficiency. Designed for enclosed preprocessing zones and pit ventilation systems.
  3. Bioscrubbers: Liquid-phase biological systems for high-load applications, particularly effective in treating water-soluble odorous compounds.

✅ Non-Biological & Hybrid Systems

  1. Chemical Scrubbers: High-efficiency wet scrubbers for tough odour streams, especially from reception pits and shredders.
  2. Activated Carbon Filters: For VOC polishing and secondary treatment stages, especially useful after biological filtration.
  3. Hybrid Systems: Combining technologies like Biofilter + Carbon Filter or Biotrickling Filter + Chemical Scrubber for comprehensive odour coverage across all process stages.

✅ Comprehensive Services

  1. Odour Mapping & Onsite Assessment: We conduct detailed odour audits and dispersion modeling to identify emission hotspots and quantify odour loads.
  2. Custom System Design & Turnkey Execution: From engineering to commissioning, we provide end-to-end odour control system solutions customized to plant layout, budget, and odour profile.
  3. Annual Maintenance & Performance Monitoring: Our AMC services include media replacement, efficiency testing, and performance tuning to ensure regulatory compliance and system longevity.

Conclusion

Odour control in mixed waste composting plants is a serious concern in India because of high organic load, non-segregation, high moisture, and use of mechanical systems like trommels, conveyors, and large reception pits. Segregation, effective processing, and emission control are mandated under the Solid Waste Management Rules, 2016, but the gaps in implementation persist because of non-availability of resources. Significant odourous compounds like VOCs, ammonia, H2S, mercaptans, VFAs, and amines are released during handling of wastes, and specific interventions like enclosed preprocessing, aeration, and pit management are necessary. Internationally, technologies like in-vessel composting, biological systems (biofilters, biotrickling filters, bioscrubbers), and non-biological systems (chemical scrubbers, activated carbon filters, thermal oxidation, ozone treatment, plasma technology) are useful in odour control, and combination treatments enhance efficiency. For India, using low-cost biological technologies like biofilters, along with better segregation, pit aeration, and enclosing mechanical systems, may improve odour control and support sustainable composting operations.

FAQ

Q1: Why does municipal solid waste composting produce strong odours?

Municipal solid waste composting involves the decomposition of high-moisture, organic-rich waste. Under anaerobic conditions—often caused by poor aeration or excess moisture—this generates volatile organic compounds (VOCs), ammonia, hydrogen sulfide (H₂S), volatile fatty acids (VFAs), and other malodorous gases.

Q2: What are the main sources of odour in Indian composting plants?

The key sources include large reception pits with poor ventilation, trommel screening equipment, and open conveyor systems. These areas facilitate anaerobic conditions and release odorous compounds during waste handling and storage.

Q3: What is the best odour control technology for MSW composting in India?

Biological systems like biofilters and biotrickling filters are the best in cost terms for Indian conditions. They provide high odour removal efficiency (85–98%) with relatively lower running cost, especially when combined with appropriate enclosures and pit aeration systems.

Q4: Are Indian composting plants required to control odour under law?

Yes. The Solid Waste Management Rules, 2016, control odour by proper segregation of waste, standards for processing, and measures for controlling emissions. A permission from the State Pollution Control Boards is required for plants with more than 5 metric tonnes per day with special provisions for odour control.

Q5: Can process adjustments alone eliminate odour emissions?

No. While process improvement like aeration and moisture control reduces odour formation, odour formation cannot be eliminated. Effective odour control relies on the application of a combination of biological or chemical treatment processes, equipment enclosures, and efficient management of sound reception pits.

 

 

Controlling Odour from Milk, Ghee and Dairy Processing: A Complete Guide

Introduction

In the dairy industries maintaining a clean hygienic and Odour free environment is critical not only for regulatory compliance but also for employee health and brand image. From milk pasteurization to ghee carification, each stage in dairy processing can emit various smell that, if left unchecked can cause discomfort , environmental concerns and even neighbour complaints. This blog guides you to explore the cause of odour in dairy, milk and ghee processing plants and effective strategies to control and eliminate them.

Why Odour Control Matters in Dairy Plants

Dairy processing involves the handling of large amounts  of organic materials such as raw milk, cream, curd and butter, which are subjected to spoilage and fermentation. If not managed properly, the by-products of these processes can lead to the release of unpleasant smells. Here’s why odour control  should be a top priority:

  1. Compliance with Environmental Norms: Pollution control boards across many countries mandate odour management as part of environmental compliance.
  2. Community Relations: Plants located near residential areas need to ensure they do not disrupt the local environment.
  3. Employee Health and Morale: Persistent foul odours can reduce workplace satisfaction and may even lead to health complaints.
  4. Brand Reputation: An unpleasant smell near your processing unit can negatively impact your brand image and consumer trust.

What Causes Foul Smell in Dairy and Ghee Factories?

Understanding the sources of odour helps in deploying targeted solutions. Some of the most common odour sources in a dairy or ghee processing facility include:

1. Raw Milk Storage

Psychrophilic (bacteria with optimal growth rate below 15°C) and Mesophilic (bacteria with optimal growth rate between 20-40°C) bacterial growth can make the milk processing plant smell awful. This happens, If the milk is stored for extended periods at improper temperatures, it can ferment and can produce sour or putrid odours.

2. Pasteurization and Heating Processes

The heating of milk and cream releases volatile organic compounds (VOCs) that contribute to strong smells, especially during ghee production. Also improper processing like Overheating butter during clarification can cause burnt odours, while incomplete removal of milk solids can lead to spoilage-related smells.

3. Whey and Sludge Disposal

Whey, a by-product of curd and cheese making, contains organic matter that decomposes quickly. Improper disposal leads to foul smells.

4. Spillage and Floor Cleaning

Milk spills or leftover residue on floors can rot and produce odour if not cleaned thoroughly.

5. Wastewater Treatment

Effluents containing milk solids, fats, and detergents from cleaning-in-place (CIP) systems can create anaerobic conditions, emitting hydrogen sulfide and other gases.

Effective Odour Control Strategies

Managing odour in dairy processing plants requires a multi-pronged approach combining engineering, chemical, and biological controls. Here are some proven strategies:

1. Proper Housekeeping and Hygiene Practices

  1. Regular cleaning schedules
  2. Immediate cleanup of spills
  3. Use of cleaning agents

2. Ventilation and Air Filtration

  1. Air quality management is critical to prevent airborne contamination. High-efficiency particulate air (HEPA) filters, with 99.97% efficiency for 0.3-micron particles, can remove microbial contaminants
  2. Installing air curtains in high-odour zones
  3. Installation of exhaust fans to ensure air circulation

3. Enclosed Processing Units

Whenever possible, ensure that odour-generating processes like ghee clarification or cheese ripening are enclosed and equipped with fume extraction systems. Also its always better to use the enclosed crate washing units and so on to avoid the spillage milk speading all over and acting as a fugitive source of odour.

4. Biological Treatment Systems

These eco-friendly systems use microbial activity to neutralize odours.

Biofilters (Cocofil™ or Organic Media)

A mixture of coconut husk, compost, and soil traps and degrades VOCs biologically. These are perfect for continuous, low-concentration odour sources.

Bioscrubbers

In this setup, odourous air is washed with water in a tower where bacteria are suspended. The scrubbing media absorbs odourous gas, and which is later transferred to an aeration-based treatment unit. At this aeration tank the microbes digest compounds like H₂S and ammonia and making it odourless compounds. This liquor is later circulated again in the absorption/scrubbing column to as a continuous system.

✅ Biotrickling Filter

In this setup, odourous air is passed through a column where the microbes are attached on a packing medium like in the trickling filter. Unlike trickling filter, which is used for wastewater treatment, here the case of biotrickling filter, air is being treated. Similar to that in the scrubber, the mass transfer of odourous2 compounds first happens from waste gas to the liquid that is being trickled over the media containing bacteria. Then the compounds gets taken up by the bacteria from the liquid and neutralize them.

All the above systems are low-maintenance, energy-efficient, and are highly effective for odour control.

5. Chemical Scrubbers

Ideal for point-source odours with high gas concentrations. Here, odourous air is passed through a packed column or spray scrubbers where it reacts with acid/alkali solutions.

Acid Scrubbers

Used for ammonia control (uses acidic solution as scrubbing liquid)

Alkaline Scrubbers

Used for hydrogen sulfide and other acid gas control (alkaline solutions are used as scrubbing liquid).

Always include mist eliminators to prevent chemical carryover.

6. Activated Carbon Filters

These are compact, plug-and-play systems that adsorb odourous gases using porous carbon media. Suitable for:

  1. Packaging rooms
  2. Ghee storage areas
  3. Smaller plants or urban units

They offer high removal efficiency and minimal maintenance, making them a popular choice.

7. Composting and Sludge Management

Instead of letting organic waste rot in open containers, convert it into compost or manage it through covered anaerobic digestion tanks.

8. Odour Mapping and Monitoring

Managing odour effectively starts with knowing when, where, and how it’s being released. One of the smartest ways to do this is by using real-time odour mapping and monitoring with advanced sensor technology.

By placing sensors and data loggers in key areas around the facility, plant operators can keep an eye on odour levels, spot unusual changes, and identify problem spots quickly. This steady flow of data helps teams take action early—before odour becomes a regulatory issue or leads to complaints from the community.

How Oizom Helps with Odour Monitoring

Oizom (www.oizom.com), a leader in environmental monitoring, provides innovative tools like Polludrone and Odosense to tackle odour challenges. These smart, IoT-enabled devices are designed to accurately detect a variety of odourous gases, including hydrogen sulfide (H₂S), ammonia (NH₃), methane (CH₄), and VOCs, giving operators the insights they need to stay ahead of potential problems.

Environmental and Legal Compliance

In India and many other countries, dairy processing units—including those producing milk, curd, butter, and ghee—must adhere to stringent odour emission norms laid out by their respective Pollution Control Boards. The Central Pollution Control Board (CPCB) and State Pollution Control Boards (SPCBs) have specific environmental guidelines aimed at minimizing nuisance odours that can affect local communities. To stay on the right side of regulations, facilities need to run regular environmental audits, keep current records of their emissions and cleanup efforts, and work with certified experts in odour control. Why go through all that? Because staying compliant doesn’t just help avoid fines or legal trouble—it also builds public trust and shows that the company genuinely cares about the environment.

What Can Elixir Enviro Systems Do for Odour Control in Dairy Plants?

Elixir Enviro Systems is a leading name and pioneer in India in industrial odour control, providing end-to-end solutions that help dairy processing units stay compliant, efficient, and community-friendly. With extensive experience in managing odour emissions across diverse industries, Elixir offers specialized services tailored for dairies, milk processing units, and ghee manufacturing plants, where organic waste, fermentation processes, and effluent treatment systems often result in strong and persistent odours.

Our offerings include:

  1. Odour Assessments & Dispersion Modelling – Site-specific odour studies using     advanced modelling tools to identify emission sources and predict odour spread.
  2. Custom-Engineered Odour Control Systems – Design and installation of biofilters, chemical scrubbers, and activated carbon units specifically suited to dairy-related emissions.
  3. Turnkey ETP Upgrades & Sludge Handling – Enhancing existing effluent treatment plants to reduce odour-causing compounds and improve sludge management.
  4. Layout Optimization & Engineering Support – Smart facility design and airflow optimization to prevent fugitive emissions and reduce odour hotspots.
  5. Ongoing Monitoring & AMC – Real-time odour monitoring, annual maintenance contracts.

With over 1 million m³/hr of treated air capacity across India, Elixir Enviro Systems is the trusted partner for sustainable, scalable, and proven odour control in the dairy industry.

Conclusion

Odour control in dairy, milk, and ghee processing plants is not a luxury—it’s a necessity. Persistent odours don’t just affect your plant’s environment; they can compromise employee health, community relations, and compliance with environmental regulations. A proactive, well-engineered odour management strategy enhances operational efficiency, reduces legal risk, and strengthens your brand’s reputation.

Elixir Enviro Systems helps dairy processors take odour control from an afterthought to a core operational priority. With industry-specific expertise, cutting-edge technologies, and end-to-end support, we empower your facility to operate cleaner, safer, and more sustainably.

📞 Need help with odour control at your facility?

Partner with Elixir Enviro Systems to implement reliable, compliant, and sustainable odour control solutions tailored to your dairy operations.

👉 Contact us today

📧 Email: info@elixirenviro.in  🌐 Visit:www.elixirenviro.in

 

FAQs

1. What causes foul odours in dairy and ghee processing plants?

Foul odours can result from the fermentation of spoiled milk (raw material handling), heating of fats (processing), waste accumulation, whey disposal, and inefficient cleaning processes. Also, wastewater treatment plant collection tanks and headworks creates big odour nuisance issues. In many places, the emissions from the spray drying column also creates huge odour nuisance. In short, the odour from dairy can be the following places

  1. Raw milk storage tanks
  2. Milk spillage and floor washings
  3. Ghee clarification and fat separation
  4. Whey disposal units
  5. Effluent treatment plant (ETP) including the Sludge handling units
  6. Storage of expired or rejected dairy products
  7. Cleaning-In-Place (CIP) system discharges

2. How is odour measured in dairy plants?

Odour perception is subjective but measurable using sensory and instrumental techniques. Commonly detected smells in dairy operations include sour milk, rotten eggs (hydrogen sulphide), rancid butter, and ammonia-like scents. Odour monitoring includes both qualitative and quantitative approaches:

  1. Sensory methods: Human olfactometry (e.g., dynamic dilution olfactometry)
  2. Chemical analysis: Gas chromatography-mass spectrometry (GC-MS), H2S meters
  3. Real-time sensors: Ammonia, VOC, and sulphide detectors
  4. Odour dispersion modelling: Using tools like AERMOD or CALPUFF to predict impact

3. What are the key odourous compounds in a dairy?

Several key compounds are responsible for malodour in dairy operations:

  1. Hydrogen sulphide (H₂S): Produced in anaerobic environments
  2. Volatile fatty acids (VFAs): Resulting from the decomposition of milk solids
  3. Ammonia (NH₃): Released from protein breakdown and cleaning agents
  4. Methyl mercaptan and dimethyl sulphide: Emitted from ghee and fat residues
  5. Skatole and indole: Found in biological waste streams

4. What are operational optimization strategies for odour control in Dairy industries?

Operational changes can significantly reduce odour:

  1. Preventing anaerobic conditions in wastewater holding tanks
  2. Immediate treatment of whey and curd waste
  3. Reducing fat/protein accumulation in drains
  4. Optimising Clean-in-Place (CIP) systems to avoid residue build-up
  5. Segregation of high-strength waste streams

5. How to Reduce Odour from Milk and Ghee Manufacturing Units

Use enclosed heating systems, make sure the area is well-ventilated, and use air scrubbers or odour-neutralizing products. Keeping the space clean and removing waste regularly also makes a big difference.

6. Are there eco-friendly solutions for odour control?

Yes, Biofilters, Biotrickling filters, Bioscrubbers and plasma ionization are sustainable, environmentally friendly options that effectively neutralize odours. Generally, the Biological  systems such as Biofilter, Biotrickling filters and Bioscrubbers turns out to be the lowest lifetime cost system. Require low energy and offer high removal efficiency for H2S and VOCs

Key considerations:

  1. Media selection and life span
  2. Moisture and pH control
  3. Prevention of clogging and biomass overgrowth

7. What are the best Practices for Dairy Units

  1. Conduct odour audits and risk assessments regularly
  2. Install containment and ventilation systems at emission points
  3. Automate cleaning processes to reduce manual handling and spillage
  4. Provide odour complaint registers and response protocols
  5. Use odour control units such as Biofilters or other technologies and maintain them well.

8. What are the challenges in odour control from dairy

  1. Variability in odour emission sources, this can be easily managed by well-engineered Odour Control Unit (OCU).
  2. High capital and operational cost for advanced systems; Capital (CAPEX) is a requirement for any OCU to be in place. Operation expense (OPEX) can be minimized by selecting the right technology; for instance the biological system.
  3. Inconsistent odour perception among stakeholders; to an extent it can be controlled by designing a well designed system wherein the odour perception outside the boundary become next to impossible.
  4. Lack of trained personnel for system operation. This is true for complex systems like thermal oxidation, cold plasma systems and so on. The biological system, generally require minimal or no requirement of operation personal.
  5. Integration with legacy plant designs. This is true especially for the plants with minimal land availability. Otherwise, integration of OCU to the plant design in not at all a challenge.

9. Can odour control improve compliance with regulations?

Absolutely. Most environmental boards require odour management plans, and effective odour control helps meet these compliance standards

Odour Control in Chemical Plants: Challenges and Solutions

Chemical plants play a crucial role in producing essential products for various industries. However, their operations often emit strong and unpleasant odours, leading to significant challenges. These odours can negatively impact the surrounding communities, cause regulatory issues, and harm the environment. Addressing these challenges with effective odour control solutions is essential to ensure compliance, protect air quality, and maintain positive community relations.

Why Odour Control Matters

  1. Community Impact: Persistent odours from chemical plants can diminish the quality of life for nearby residents. This often leads to complaints, protests, and damage to the plant’s reputation.
  2. Environmental Concerns: Odorous compounds like volatile organic compounds (VOCs) and sulfur-containing gases not only cause unpleasant smells but also contribute to air pollution and climate change
  3. Regulatory Compliance: Governments enforce strict air quality standards, including limits on odorous emissions, at present we do not have any specific standards for odour control in India other than few specific compounds. Non-compliance can result in hefty fines, legal consequences, or even operational shutdowns.

Challenges in Odour Control at Chemical Plants

Variety and Complexity of Odours

Chemical plants handle a wide range of raw materials, chemicals, and byproducts, each potentially emitting different types of odours. The variety of odours—including sulfur compounds, ammonia, volatile organic compounds (VOCs), and other organic chemicals—makes it challenging to implement a one-size-fits-all odour control solution.

Fluctuating Emission Rates

Chemical processes are often dynamic, with odour emissions varying based on factors like temperature, pressure, and the phase of the process. These fluctuations make it difficult to predict and control odour levels, especially in real-time.

Regulatory Compliance

In many regions, chemical plants must adhere to strict environmental regulations governing odour emissions. These regulations often require continuous monitoring, testing, and reporting of air quality, which can be resource-intensive. Failure to comply can lead to heavy fines or shutdowns.

Impact on Workers and the Community

The presence of strong odours can reduce air quality in and around chemical plants, impacting workers’ health and well-being. In some cases, prolonged exposure can lead to respiratory problems, headaches, and nausea. Additionally, odour emissions can affect local communities, causing complaints and public relations challenges.

Cost and Maintenance

Odour control systems, especially those that require complex equipment such as scrubbers, biofilters, or incinerators, can be costly to install and maintain. The ongoing operational costs of these systems can also be significant, especially when considering energy consumption and the need for regular maintenance to ensure they remain effective.

Effective Odour Control Solutions

Source Identification and Onsite Measurement:

Odour Treatment Technologies:

Maintenance and Monitoring:

Benefits of Odour Control in Chemical Plants

Elixir Enviro Systems’ Odour Control Services

At Elixir Enviro Systems, we specialize in providing comprehensive odour control solutions for chemical plants. Our services include:

1. Odour Control Technologies:

 

2. Onsite Odour Assessment:

 

3. Consultancy Services:

 

4. Modelling and Simulation:

 

5. Pilot Studies:

 

6. Regular Maintenance:

 

Conclusion

Odour control in chemical plants is essential not only for regulatory compliance but also for fostering community harmony, protecting the environment, and maintaining smooth operations. While the challenges may be complex, innovative solutions and proactive management can make odour control both effective and sustainable.

Partnering with a trusted expert like Elixir Enviro Systems ensures that chemical plants receive tailored, cutting-edge odour control solutions that meet their unique needs. Our commitment to excellence, sustainability, and community well-being makes us the ideal choice for addressing your odour management challenges.